Neuroscience Gateway (NSG)

Developers Platform and Dissemination of Neuroscience Software

Subhashini Sivagnanam, Kenneth Yoshimoto, Martin Kandes, Steven Yeu, Amit Majumdar San Diego Supercomputer Center, University of California San Diego

Ted Carnevale

Department of Neurobiology, Yale University

March 18, 2021

Outline

- > Recap of ongoing NSG activities and new features
- Introduction to NSG software development platform
- "Tour" of the software development platform and functionalities
- Introduction to NSG software dissemination

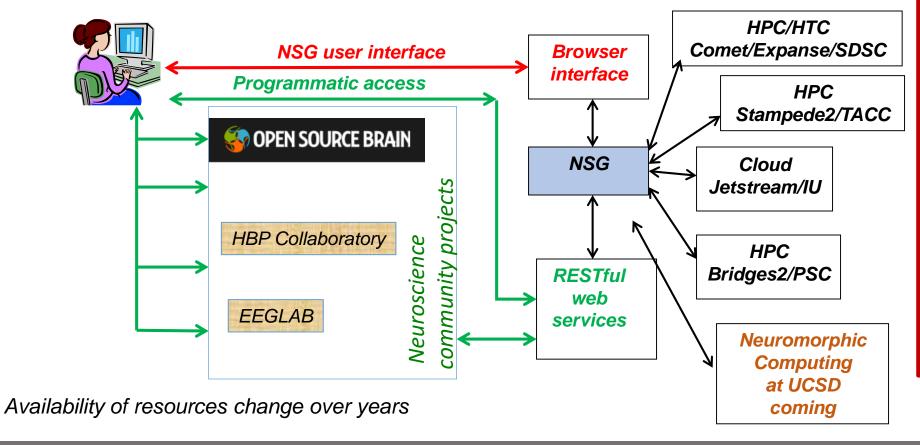
Feedback from distinguished invited attendees

The Neuroscience Gateway (NSG)

The NSG provides simple and secure access through portal and programmatic services, to run neuroscience modeling and data processing software on high performance and (more and more) high throughput compute resources http://www.nsgportal.org

FREE and OPEN to any academic and non-profit researchers from any country

NSG catalyzes and democratizes computational and data processing neuroscience research and education for everybody including researchers and students from underrepresented institutions



NSG - Portal and Programmatic Access

- NSG Portal: Simple and easy to use web interface
- NSG–R: Programmatic access through RESTful services

Side note:

Lots of Supercomputer awards by NSF in 2019-2020-2021

<u>2020 December onwards in poduction:</u>

- Expanse at SDSC
- Bridges2 at PSC

2021:

- Anvil at Purdue
- Jetstream2 at IU
- Delta at NCSA, UIUC

Al focused machines 2021:

- Neocortex at PSC
- Voyager at SDSC

NSG modeling and data processing tools

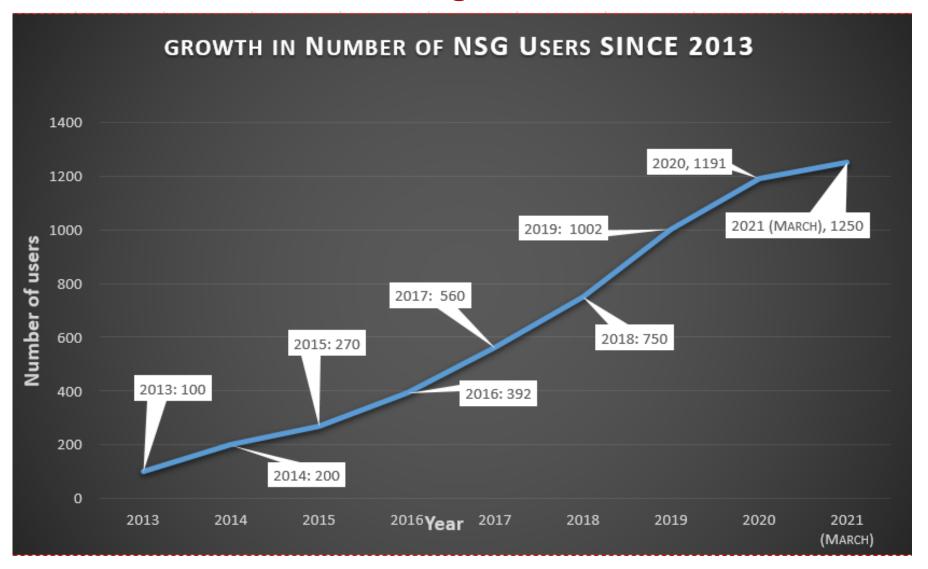
(new tools added based on user needs and un-supported/un-used tools are retired)

NEURON PGENESIS BRIAN PYNN NEST BluePyOpt
MATLAB
TensorFlow
Python
Freesurfer
Octave
MOOSE
R

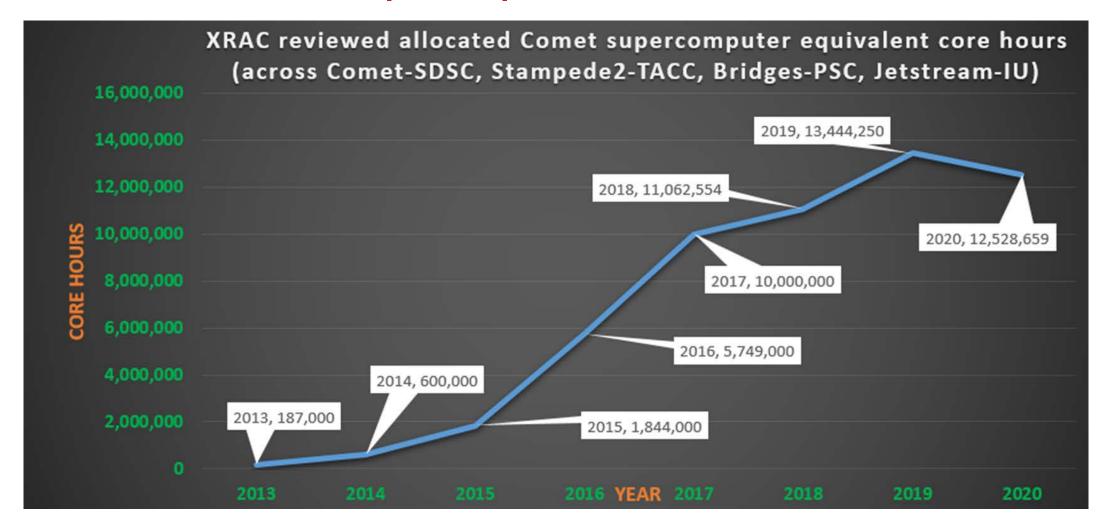
BMTK
Trees/T2N
CARLSim4
NetPyNE
EEGLAB
DynaSim

- NSF funded Comet machine at SDSC will ramp down and start retirement starting April 2021
- New NSF funded supercomputer Expanse went into production starting December 2020
 - AMD EPYC 7742 processors and NVIDIA V100 SMX2 GPUs
- We are in the process of moving software to Expanse from Comet

2012/2013


Current

NSG Growth in number of registered users – since 2013



NSG Growth in supercomputer time allocated – since 2013

NSG Enabled Publications

- https://www.nsgportal.org/citation.htm
- Neuroscience publications, presentations, posters: 156 (that we know of)
- Cyberinfrastructure related publications, presentations, posters: **56**
- Educational projects/publications (MS/PhD thesis) and Training/workshops: 35
- High school, undergrad student internship since 2011

Comet (retiring) and Expanse (new) Supercomputers at SDSC

Comet System Configuration

5+ **GB**

per core

Comet System Configuration				
System Component	Configuration			
Intel Haswell Standard Compute Nodes				
Node count	1,944			
Clock speed	2.5 GHz			
Cores/node	24			
DRAM/node	128 GB			
SSD memory/node	320 GB			
NVIDIA Kepler K80	NVIDIA Kepler K80 GPU Nodes			
Node count	36			
CPU cores:GPUs/node	24:4			
CPU:GPU DRAM/node	128 GB:48 GB			
NVIDIA Pascal P100	GPU Nodes			
Node count	36			
CPU cores:GPUs/node	28:4			
CPU:GPU DRAM/node	128 GB:64 GB			
Large-memory Has	well Nodes			
Node count	4			
Clock speed	2.2 GHz			
Cores/node	64			
DRAM/node	1.5 TB			
SSD memory/node	400 GB			
Storage Systems				
File systems	Lustre, NFS			
Performance Storage	7.6 PB			
Home file system	280 TB			

- Comet will retire soon (ramp down rapidly starting April 2021) as a NSF Supercomputer
 Expanse became available starting December 2020 for the next 5 years
 - On Expanse NSG users need to specify memory requirement via NSG interfaces

Expanse System Configuration

	1		
Full System			
Total compute nodes	728		
Total compute cores	93,184		
Total GPU nodes	52		
Total V100 GPUs	208		
Peak performance	5.16 PFlop/s		
Total memory	247 TB		
Total memory bandwidth	215 TB/s		
Total flash memory	824 TB		
	HDR InfiniBand Interconnect		
Topology	Hybrid Fat-Tree		

CPU Type	AMD EPYC 7742		
Nodes	726	~ <2 GB	
Sockets	2	nor	
Cores/socket	64	per	
Clock speed	2.25 GHz	core	
Flop speed	4608 GFlop/s		
Memory capacity	¹ 256 GB DDR4 DRA	М	
Local Storage	1TB Intel P4510 NVMe PCIe SSD		
Max CPU Memory bandwidth	409.5 GB/s		

	GPU Nodes
GPU Type	NVIDIA V100 SMX2
Nodes	52
GPUs/node	4
CPU Type	Xeon Gold 6248
Cores/socket	20
Sockets	2
Clock speed	2.5 GHz

	Large-Memory			
	СРИ Туре	AMD EPYC 7742		
	Nodes	4		
	Sockets	2		
	Cores/socket	64		
	Clock speed	2.25 GHz		
	Flop speed	4608 GFlop/s		
	Memory capacity	2 TB		
		1		
		DISK I/O Subsystem		
Systems NFS, Ceph		NFS, Ceph		

Lustre Storage(performance)	12 PB	
Ceph Storage	7 PB	
	HDR InfiniBand Interconnect	
Topology	Hybrid Fat-Tree	
•	•	

NSG: evolving to meet the evolving needs of neuroscience research

- Started in 2013 as a computational neuroscience science gateway NEURON, GENESIS, NEST etc.
- In recent years more and more data processing software, pipelines EEGLAB, Freesurfer, R etc.

- Big Data transfer, data sharing, data management were not part of NSG in 2013 or in the earlier years of NSG
- Due to growing data processing and analysis in neuroscience, those are a necessity for NSG to provide
- In recent years NSG is used for training, workshops, educational purposes from institutions worldwide

• In recent years increase in request for dissemination of neuroscience software

New Features 1: NSG integration with Open Science Grid

- Open Science Grid Pioneered High Throughput Computing (HTC); NSF, DOE funded
 - Provides software and services to users and resource providers
 - A distributed fabric of high throughput computational services
 - OSG does not own resources uses available resources
 - Enables the opportunistic usage, sharing of resources
 - Uses meta-scheduling via HTCondor
 - OSG uses "glide in" mechanism to submit jobs to "free" resources at OSG resource providers
- NSG was integrated with OSG
 - NSG users see no difference jobs going to OSG resources
 - Typically limit on data size and single node jobs
 - First software made available on NSG portal is TensorFlow on OSG
 - In the future other neuroscience software can be made available

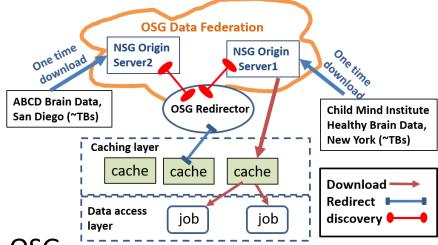


Figure 8. OSG StashCache Architecture.

New Features 2: large data transfer

- Until now, NSG allowed data upload via the portal, ok for small size files
- Data processing requires larger size files 10s/100s/1000s GB
- NSG was integrated recently with Globus data transfer
 - Reliable, high-performance file transfer platform
 - Allows users to transfer large amounts of data seamlessly between systems
 - Automatic transfers with built-in fault recovery
- Globus can be used for file transfers between the Neuroscience Gateway and:
 - An institution with Globus installed
 - A personal computer (known as a personal endpoint)
- NSG team provides information to users about directories into which data is transferred
- These directories can be accessed in user's job
- Community user mode of operation allows technically jobs to look into directories

New Features 3: data sharing

- Globus can also be used for sharing data with your collaborators
- Create a group of existing NSG users who can access your data
- Public and personal directory paths provided to users
- Data can be used by the user and user's collaborators in NSG jobs

Intended use of the directories			
Public directories	Personal directories		
 To make data available to other NSG users to read and process Not recommended for writing output files from NSG jobs 	 Recommended for personal input data to be used in your own NSG jobs Recommended for writing large output files from NSG jobs 		

Note: NSG operates using a community user account at the backend and technically it is possible for the community user account to access user's data from a job.

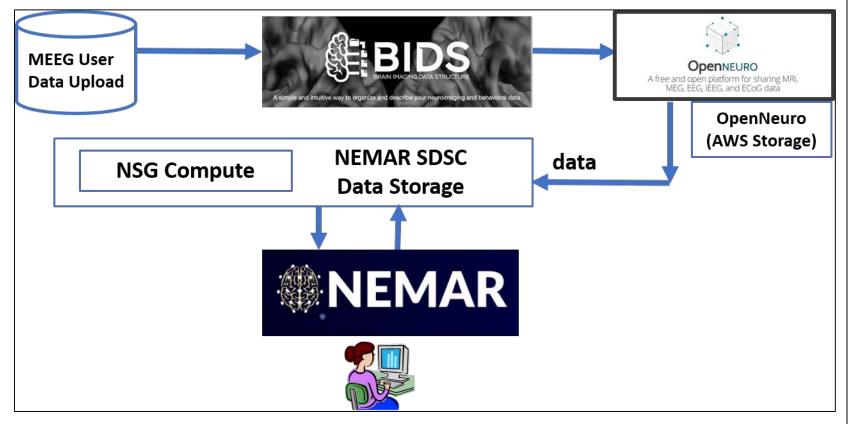
New Features 4: data access and management

- Multiple users are now able to process same data publicly available data or data shared by a user
 - Other users can process the data using NSG's data processing software e.g. Matlab,
 Python, EEGLAB, Freesurfer etc.
 - This is outcome of the Globus sharing
- We are able to provide users persistent storage
 - A user can access same data from one job to another
 - For example output of one job can be accessed in the following job

New Feature 5 (work in progress): commercial cloud integration

- First approach is cloudbursting from Expanse
- SDSC systems people are implementing cloudbursting (already on Comet) on Expanse
- A SLURM job can be tagged to send to AWS via direct path connection set up with AWS by network experts
- NSG integration ongoing
- If NSG has cloud \$, we can send NSG jobs to AWS (and other cloud vendors eventually) via this mechanism
 - If individual users come with their own \$ amount, cloud accounting not trivial to solve
- Integration with NSF funded CloudBank project for managing account
 - A cloud access entity that helps access and use public of clouds for research and education by delivering a set of managed services
 - https://www.cloudbank.org/

Training and Outreach


- NSG training/workshop regularly since 2013: at SfN, CNS, CogSci conferences, other
- Last training webinar ~90 attendees
 - <u>Neuroscience Gateway Using NEURON and EEGLAB Training Webinar,</u> Friday, November 20, 2020
- Upcoming training in June 2021
 - Specifically for HSI neuroscience faculties
 - Tentative title: Introduction to Neuroscience Gateway and Electroencephalography, EEGLAB
- NSG used in classroom teaching
- Continuing since 2011 Research Experience for High School (REHS) program
 - 2020 project topics included HPC and Mobile EEG device collected data analyzed using EEGLAB

NSG part of the NIH BRAIN Initiative NEMAR grant NeuroElectroMagnetic data Archive and tools Resource

- Develop NEM data archive and data curation workflow
- Support both standard and custom data processing pipeline
- Support display, viz, download of data
- Support search of data
- Use NSG for data processing
- Connected to OpenNeuro

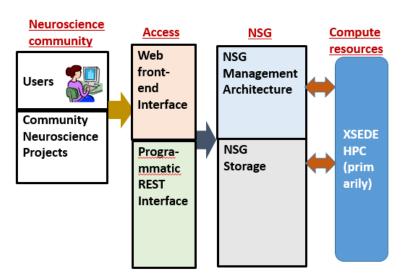
Outline

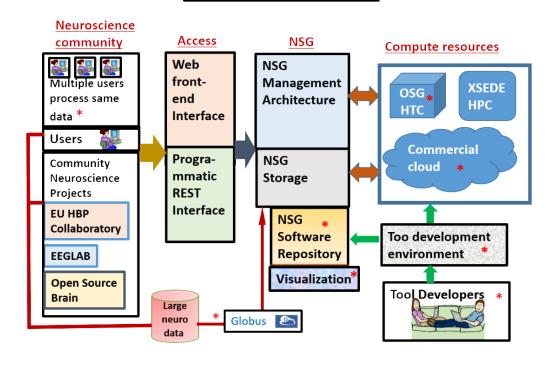
- Recap of ongoing NSG activities and new features
- > Introduction to NSG software development platform
- "Tour" of the software development platform and functionalities
- Introduction to NSG software dissemination

Feedback from distinguished invited attendees

Observations from NSG usage mode in recent years

- Developers of neuroscience modeling and data processing software are using NSG as a cyberinfrastructure environment on which they can do development, testing and benchmarking (including at-scale) of their software, libraries and pipelines
- Neuroscientists disseminating their developed software via NSG
- Motivation behind disseminating software via NSG:
 - NSG already provides access to HPC and HTC computing resources, and GPUs
 - NSG provides optimally installed neuroscience and other needed software available on NSG's compute resources
 - NSG has a growing user base
 - NSG team works closely with neuroscience software developers
 - NSG has good user support mechanism
 - NSG has good training and outreach programs; hosts workshops jointly with developers and users
 - NSG can be mentioned in grants as one of the dissemination platforms
 - (BRAIN INITIATIVE Tools call encourages disseminating via archives such as NEMAR)

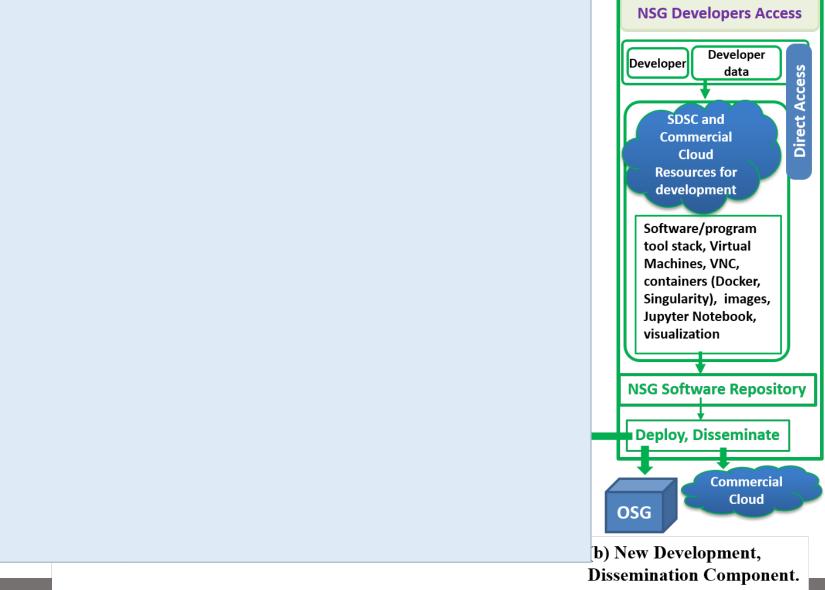




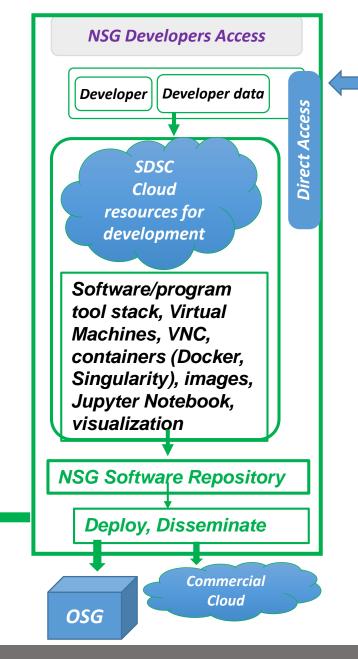
NSG – existing science gateway Adding software development platform and dissemination capability

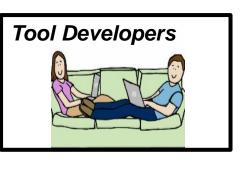
Original NSG

Evolving NSG
* New features



Addition of software development platform to current NSG





Various components of software development platform

XSEDE HPC/HTC

resources

Software Development Platform

- Provide neuroscience software developers direct access to a SDSC cloud platform (free to developers)
- Neuroscience software
 - development
 - enhancement
 - testing
 - benchmarking of modeling and data processing neuroscience software
- In addition to SDSC cloud, access to HPC/HTC, GPU computing resources
- Access to commercial cloud computing for development, testing
- Test implementation on production environment of job submission (via scheduler), file system, data access etc.

Enabling neuroscience software development

- Enable development of neuroscience software that are implemented
 - in shared memory (such as threaded codes) parallel across the cores of a multi-core node
 - in distributed memory (such as using the Message Passing Interface library) parallel
 - Hybrid parallel (MPI-OpenMP)
 - Accelerators (GPUs; in the future other special AI hardware)
- The SDSC cloud platform contains a comprehensive software stack
 - OS (such as Ubuntu, CentOS)
 - Compilers (such as Intel, gcc)
 - Middleware (such as MPI library)
 - Analysis software and packages (such as Matlab, R, Python)
 - computational and data processing neuroscience software (NEURON, EEGLAB, ML/DL tools etc.)
 - collaborative tools (such as VNC server, Jupyter Notebook)
 - Container (Docker and Singularity containers)
- Additional software can be added based on neuroscience software developers' needs

Register as a developer to get access to NSG's SDSC cloud environment

	About -	Resources *	Support *	Outreach -	Register +	Portal	
S-ft	- de Decede	Di-tti-					
Software i	Software Tools Developer Registration Form						
Filling out this registration	on form will create an acc	count on the NSG developer's p	platform to develop, test, bend	chmark and ultimately dissemi	nate your neuroscience softw	are via NSG's	
dissemination process.							
All fields	are required	except Street and	State				
First Name							
First Name							
Last Name							
Email							
Confirm Email							
Institution/Organization							
Professional/Educational							
			Rese	earch Scientist			
Street Address (optional)							
(
State (optional)							
Country				1011			
			Unite	ed States \			
Phone Number							
Neuroscience Software De	escription (2000 chara	octers max)					
				y describe your oscience software, for			
				ple if it is for modeling or			
				processing, what other			
				are/libraries/tools it			
				nds on, if it is a parallel are needing high			
				rmance or high			
			throu	ghput computing, etc.			
					2		
Website (Your research or	PI site)						

Outline

- Recap of ongoing NSG activities and new features
- Introduction to NSG software development platform
- > "Tour" of the software development platform and functionalities
- Introduction to NSG software dissemination

Feedback from distinguished invited attendees

Outline

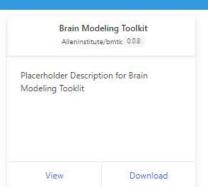
- Recap of ongoing NSG activities and new features
- Introduction to NSG software development platform
- "Tour" of the software development platform and functionalities
- > Introduction to NSG software dissemination

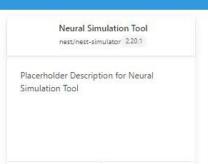
Feedback from distinguished invited attendees

NSG neuroscience software repository

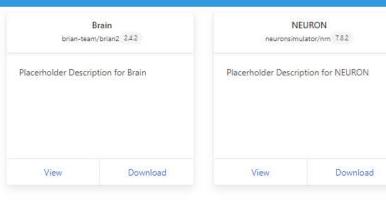
- NSG will provide software repository for mature and robust neuroscience software
- NSG software repository on SDSC's cloud storage TBs of space (paid by NSG grant)
 - Storage free for developers disseminating software
- Developers will be able to move software to NSG repository from
 - NSG software development platform (fast)
 - Outside development environment
- A web frontend lists all the software disseminated
 - Provides detailed description of the software for the user community
 - Points to software's GitHub location
 - Provides information about input/output files (especially related to NSG)
- Web frontend allows users to download the software singularity image, cloud image etc.

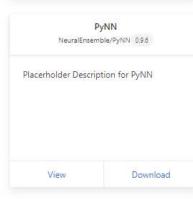
View




A

NSG Disseminated Software Repository


Download


Download

View

Neuroscience software dissemination

- Developers who use NSG developer platform can disseminate their software by publicly sharing their software and guidelines for usage via NSG
 - Software can be installed on variety large scale free XSEDE compute resources
 - HPC/HTC/cloud/GPU resources available at SDSC, TACC, PSC, other supercomputer centers
- Software can be made available in a containerized form, a cloud image etc.
 - Software can be downloaded by interested researchers
 - Users can use software on other computing resources they have access to
 - Users can take cloud image to commercial cloud resources (and pay from their own funding)
- To avoid "person in the middle" situation
 - We will provide software developers access to NSG's SDSC file system where software resides
 - Developers can maintain, update software for SDSC HPC/HTC resources
 - Developers can set up cron jobs to update software

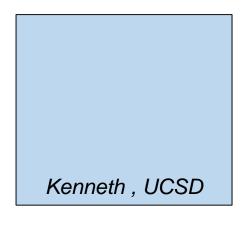
NSG: outreach and training

- NSG interacts with NeuroImaging Tools and Resources Collaboratory [NITRC] for dissemination
 - Can enable distribution via NITRC
- NSG disseminated software available to 1250+ NSG users researchers, students

- Train users and a natural outreach for software at NSG workshops
- Software can be used by students in classroom teaching

NSG - Summary

- NSG is FREE and OPEN to academic and non-profit researchers
- Provides programmatic and portal access to neuroscience tools, pipelines, data processing software on HPC, HTC, GPU and academic cloud resources; commercial cloud work on going
- NSG works with developers for neuroscience software
- Adding new features of software development and dissemination capability to existing NSG
- Encourage collaboration with researchers from around the world; strongly encourage high school, undergraduate student participation in summer projects with NSG.
- Workshops at Society for Neuroscience annual meetings, Computational Neuroscience annual meetings, NEURON Summer Workshops, CogSci18, MSI institutions (New Mexico State University, Cal State San Bernardino), Neuroinformatics, Janelia Research Campus etc.
- Please cite us if you use NSG (http://www.nsgportal.org/citation.html) Sivagnanam, A Majumdar, K Yoshimoto, V Astakhov, A Bandrowski, M. E. Martone, and N. T. Carnevale. Introducing the Neuroscience Gateway, IWSG, volume 993 of CEUR Workshop Proceedings, CEUR-WS.org, 2013
- If NSG was used, please let us know of your talks, presentations, publications, thesis work so that we can include in reports nsghelp@sdsc.edu



NSG Team

Subha, UCSD

Marty, UCSD

Ted, Yale U.

Amit, UCSD

Steven, UCSD

NSG Collaborators

Many collaborators:

- M. Hines, R. McDougal, T. Morse, Yale U; B. Lytton, S. Dura-Bernal, SUNY DMC; S. Makeig, A. Delorme, G. Cauwenberghs, M. Miller, A. Bandrowski, M. Martone, M. Tatineni UCSD; S. Nair, U. Missouri; M. Migliore, C. Lupascu IRC Italy; P. Kumbhar, HBP, EPFL; S. Neymotin Nathan S. Kline Inst; A. Silver, P. Gleeson, UCL London; D. Beeman, U Colorado; U. Bhalla, NCBS-India; J. Krichmar, UCI
- PIs/developers/supporters of software (BluePyOpt, BMTK, Brian, DynaSim, Freesurfer, MOOSE, NEST, PyNN etc.)

NSG Advisory Board:

- Maxim Bazhenov, UCSD
- Dieter Jaeger, Emory University
- Stephanie Jones, Brown University
- William Lytton, SUNY Downstate Medical Center
- Vinod Menon, Stanford University

Acknowledgement of grants

- NIH NIBIB grant: Neuroscience Gateway to Enable Dissemination of Computational and Data Processing Tools and Software (NIBIB IU24EB029005; UCSD, Yale; 2019 - 2024)
- NSF DBI grant: Collaborative Research: CIBR: Building Capacity for Data-driven Neuroscience Research (#1935749 UCSD, #1935771 Yale University; 2020 2023)
- NIH NIMH grant: BRAIN INITIATIVE RESOURCE: Development of a Human Neuroelectromagnetic Data Archive and Tools Resource (NEMAR) (NIMH R24MH120037; UCSD, Stanford; 2019 2024)
- NSF CNS grant: CRI: CI-NEW: Trainable Reconfigurable Development Platform for Large-Scale Neuromorphic Cognitive Computing (#1823366, UCSD, UCI; 2018 – 2021)
- NIH NIBIB grant: The Open EEGLAB Portal Project (NIBIB R01EB023297; UCSD; 2017 2021)
- NSF OAC grant: CyberTraining: DSE: Self-Service Training Modules for Data-Intensive Neuroscience Learning and Research (#1730655; U. Missouri, UCSD; 2017 2021)

Feedback from distinguished attendees

